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Abstract

In this project, we explored the data-driven solution to
realistic hair modeling problem. There is already some
work on generating static hair model, therefore we want
to improve on it and add some temporal and spatial coher-
ence. In a word, our work is mainly to reproduce a static
hair model generation algorithm based on CNN, and put
forward the idea of introducing temporal and spatial coher-
ence through RNN.

1. Introduction
Realistic hair modeling is one of the most difficult tasks

when digitizing virtual humans. In contrast to objects that
are easily parameterizable, like the human face, hair spans
a wide range of shape variations and can be highly complex
due to its volumetric structure and level of deformability
in each strand. The problem becomes more complicated
when it comes to reconstructing dynamic hair model, which
requires to ensure temporal and spatial coherence.

However, the amount of articles relating to this problem
is relatively small, especially for dynamic hair modeling.
Recent literature mainly focus on the generation of static
hair model, and amount of data-driven methods are applied.
For instance, Chai et al. [1] adopted a convolutional neural
network to segment the hair in the input image to fully au-
tomate the modeling process. Zhang et al. [7] learned an
architecture of generative adversarial networks to recover
the 3D hair structure from a single image. There are also
some methods take multi-view images [6] or videos [3] as
network input. On the other hand, dynamic hair modeling
methods still stay in a traditional stage. Xu et al. [5] propose
a motion-path analysis algorithm to track local hair motions
in input videos, and formulate the global hair reconstruction
as a spacetime optimization problem.

Based on the literature reviewing, we decided to use con-
volutional neural network adapted from HairNet [9] to gen-
erate original static hair model. HairNet is a relatively sim-
ple network without too many parameters, which means it
is easier to train and adapt. Moreover, HairNet products a

strand feature layer as medial output, this layer can be ex-
tracted and put into RNN to ensure the temporal and spatical
coherence.

Our contributions in this project can by summarized as
follows:

• We construct a small database of around 300 3D hair
models and 1800 corresponding orientation maps.
• We achieve an effective representation of hair roots by

introducing scalp-space. Then, sampling hair strand
based on the representation.
• We put forward the idea of ensuring temporal and spa-

tial coherence through RNN.

2. Approach Overview
In this section, data generation is introduced first. This

step produces orientation maps corresponding to each syn-
thetic hair model. Then, I will explain the representation
methods we used to parameterize hairs. Finally, CNN takes
the orientation maps as input and generates hair strands rep-
resented as sequences of 3D points.

2.1. Data Preprocessing

Obtaining a training set with real hair images and
ground-truth 3D hair geometries is challenging. We can fac-
tor out the difference between synthetic and real hair data by
using an intermediate 2D orientation field as network input.
This enables our network to be trained with largely accessi-
ble synthetic hair models and also real images without any
changes. For example, the 2D orientation field can be calcu-
lated from a real image by applying a Gabor filter on the hair
region automatically segmented using the method of [8]. It
can also by generated easily from synthetic 3D hair model
by projection.

Orientation Map Generation. We collect an original
hair dataset with about 300 3D artificial hair models pro-
vided by USC-HairSalon1, which have already been aligned
to an identical bust model. Then, we define a bounding box
as the boundary of our model space. The center point of the

1http://www-scf.usc.edu/˜liwenhu/SHM/database.
html
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Figure 1. Left: A bounding box set up with a camera pose for 3D volume definition and 2D projection [7]. Right: Data augmentation by
rotating and flipping.

bounding box is determined by the mean point among all
hairs. In order to get 2D orientation map, we put a camera
straight forward to the bust model. The center of the image
plane coincides with the center of the bounding box. The
2D map is produces by orthogonal projection of strand’s
tangent direction. The final output is a 2 × 256 × 256 im-
age, whose two channels store the color-coded hair orienta-
tion map (see the left part of Figure 1).

Data Augmentation. We rotate the 3D model around
the y-axis at random angles and randomly flip the gener-
ated images (see the right part of Figure 1). This operation
can simulate the situation where human face is not directly
facing the camera in real photos. In addiction, we also add
Gaussian noises to the orientation to emulate the real con-
ditions.

After this step, we obtain more than 2000 orientation
map and corresponding hair models from about 300 orig-
inal data.

2.2. Hair Model Representation

In order to make learning efficient, Hair model needs to
be parameterized into an easy-to-learn form. Firstly, all of
the hair strands need to be represented in a uniform form.
Secondly, as a hairstyle contains 10K strands, hair sampling
must by performed to speed up training.

Hair Strand Representation. We represent each strand
as an ordered 3D point set ζ = {si}Mi=0, evenly sampled
with a fixed number (M = 100 in our experiments) of
points from the roots to end. Each sample si contains at-
tributes of position pi and curvature ci (The curvature pa-
rameter is further used in reconstruction in original paper,
but there we just treat it as an additional information feed
into network). Although the strands have large variance in
length, curliness, and shape, they all grow from fixed roots
to flexible ends. To remove the variance caused by root
positions, we represent each strand in the local coordinate
anchored at its root.

Figure 2. 3D scalp space parameterization [4]

Figure 3. Hair root distribution in the uv plane of scalp space

Hair Sampling. We sample N = 1024 strands per hair
model as training ground truth. In order to make uniform
sampling among the scalp, we adopt the method in [4] to
parameterize the scalp to a 32 × 32 grid, and sample hair
roots at those grid centers.

Specifically, this method assume that the scalp surface
is similar to the upper half of a unit sphere. The world
coordinate frame is originated at the center of the hemi-
sphere. Its y-axis points upward. Given a world space point
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Figure 4. Network Architecture [9]

P = (x, y, z), its scalp space coordinates (u, v) are defined
as follows:

u = arccos
x̂√

x̂2 + (ŷ + 1)
2

v = arccos
ẑ√

ẑ2 + (ŷ + 1)
2

(1)

where (x̂, ŷ, ẑ) is the spherical projection of (x, y, z) onto
the unit sphere (see Figure 2). Intuitively, u and v can be
interpreted as two angles ranging from 0 to π as shown in
the two rightmost figures in Figure 2.

Hair root distribution in the uv plane of scalp space is
shown in Figure 3. We can see that the scalp representation
can align the root distribution with the coordinate axis so
that uniform sampling can be performed.

Finally, the hair model can be treated as a set of N
strands H = ζN with fixed roots, and can be formulated
as a matrix AN×M , where each entry Ai,j = (pi,j , ci,j)
represents the jth sample point on the ith stand.

2.3. Hair Prediction Network

Network Architecture. As illustrated in Figure 4, our net-
work first encodes the input image to a latent vector, fol-
lowed by decoding the target hair strands from the vector.
For the encoder, we use the convolutional layers to extract
the high-level features of the image. We use the 2D max-
pooling to spatially aggregate the partial features (a total
number of 8×8) into a global feature vector z. This greatly
reduces the number of network parameters.

The decoder generates the hair strands in two steps. The
hair feature vector z is first decoded into multiple strand fea-
ture vectors {zi}Mi=0 via deconvolutional layers, and each zi
could be further decoded into the final strand geometry ζ via

the same multi-layer fully connected network. This multi-
scale decoding mechanism allows us to efficiently produce
denser hair models by interpolating the strand features.
Loss Functions. We apply two losses on our network. They
are the L2 reconstruction loss of the 3D position and the
curvature of each sample (We do not adopt the collision loss
in the original paper because it is hard to fit human body
with ellipsoids and the performance increase is slight):

L = α1Lpos + α2Lcurv. (2)

Lpos and Lcurv are the loss of the 3D positions and the cur-
vatures respectively, written as :

Lpos =
1

NM

∑
i,j

wij‖pij − p∗
ij‖

2

2

Lcurv =
1

NM

∑
i,j

wij(cij − c∗ij)
2

(3)

where p∗
ij and c∗ij are the corresponding ground truth posi-

tion and curvature to pij and cij .
Given a single-view image, the shape of the visible part

of the hair is more reliable than the invisible part, e.g. the
inner and back hair. Thus we assign adaptive weights to the
samples based on their visibility visible samples will have
higher weights than the invisible ones:

wij =

{
10.0 sij is visible
0.1 otherwise

(4)

3. Experiment

In this section, I will briefly explain how we process hair
model data and setup neraul network. Then, the network
inference results are shown with some analysis.
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Figure 5. Total loss curve converges at around 7000K step

3.1. Implement Detials

We implement data preprocessing and hair sampling
with C++. In this process, every hair model generates 6
orientation maps. The hair points’ position and curvature
are also calculated and stored in HDF5 file while perform-
ing projection. After that, we set 10% of these data as test
set.

We use Tensorflow to construct and train CNN. During
training, we resize all the hair so that the hair is measured
in the metric system. Specifically, the training parameters
of Equation 2 are fixed to be α1 = α2 = 1. We use Relu for
nonlinear activation, Adam [2] for optimization, and run the
training for 50 epochs using a batch size of 16 and learning
rate of 10−4.

3.2. Result Analysis

The total loss curve shown in Figure 5 seems to con-
verge, but as we measure the mean square distance between
all the points on test hair model, the error fluctuates between
6.4 cm and 7.0 cm. It is pretty large compared to 1.7 cm in
the original paper. We randomly visualize a few predictions,
the results are shown in Figure 6. We can see the network
predictions can only represent outline of a hairstyle but ig-
nore many strand details. Some hair strands in the back even
tilt up from scalp, but this phenomenon gradually eases as
the training step increase.

I think the main reason for the unsatisfactory result is
that the size of dataset is too small. Every hair sample con-
tains about 106 points, but we only use 1800 samples to
train the network. So, it becomes a big p small n problem.
Compared with 40K hair models used in the original paper,
our network will suffer overfitting quickly while training
with 1800 hair models. Additionally, visible-weight does
not make sense in this inaccurate training process.

4. Conclusion & Future Work
In this project, we explored the idea of using neural net-

works to generate dynamic hair model. Due to limited time
and device, we only model static hair without any open
source code. This project made me realize that there are
many details and difficulties behind a novel idea. This
project involves not only the construction and training of

Figure 6. Visualized result

neural network, but also many graphical operations in 3D
space. The time I spend on making dataset was even longer
than training the network.

In the future, I will expend the size of dataset and refine
the smoothness and curliness of the hair to get plausible re-
sult. What’s more, I will try to take the video sequence as
input, then refine the strands-feature layers through RNN to
ensure temporal and spatial coherence. After interpolating
among features and reconstruction, the dynamic hair model
matching the input video will be generated.
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